院长信箱
当前位置: 首页>师资队伍
教师详情
  • 个人信息
    戴晓明

    Dai xiaoming

    系      所:
    |通信工程系|
    职      称:
    教授  
    职      务:
    办公地点:
    网络楼113
    办公电话:
    电子邮箱:
    Daixiaoming (at) ustb.edu.cn; cyjxiaoming (at) gmail.com
    本 科 课 程:
    信号检测与估计基础 无线电定位导航原理及应用
    研究生课程:
    信号检测与估计
    科 研 方 向:
    宽带无线通信/6G 人工智能 语音信号处理 芯片设计
    学术与社会兼职:
    IMT-2020(5G)新型多址接入技术组副组长 南昌大学兼职教授 中南大学兼职研究生导师
  • 简   历

    戴晓明,北京科技大学计算机与通信工程学院教授、博士生导师,IMT-20205G)新型多址接入技术组副组长,无线通信与信号处理实验室主任,研究方向:6G关键技术、语音信号处理、人工智能大数据和ASIC芯片设计等

    主要从事无线传输和接收机设计理论与关键技术方面的研究,提出“低复杂度性能无损最大似然检测Reduced Complexity Performance-lossless Maximum Likelihood Detection [11][14][39]图样分割多址接入Pattern Division Multiple Access, PDMA[37]复杂度受限容量可达非正交多址接入设计Complexity-Constrained Capacity-Achieving Non-Orthogonal Multiple Access Design[1]图样分割随机接入(Pattern Division Random Access, PDRA[3]等技术

    1)学术研究相关工作

    以第一作者身份发表学术论文30余篇,其中IEEE Trans. Commun.IEEE Wireless Commun.SCI文章10余篇(JCR一二区期刊8篇),以通信作者身份发表学术论文20余篇,申请/授权国内国际发明专利30余项。研究成果[15][41]被国际电信联盟(International Telecommunications Union, ITU未来地面无线通信技术发展趋势(Future Technology Trends of Terrestrial IMT Systems报告引用(页码6[54]研究成果[41]华为2013全球创新计划研究项目(项目编号:IRP-2013-01-02,页码8)作为唯一参考文献引用[56];在文献[11]中提出一种将最大似然(Maximum Likelihood, ML检测算法复杂度降低一个数量级,性能仍然保持一致(数学上等价)的简化ML检测算法检测方面的研究成果被韩国Sejong大学电子工程系作为研究生文献阅读材料研究成果[8][11]被欧盟第七框架计划(7th Framework Program, FP7)核心项目引用[67]研究成果[6][8]专利引用44次(东京大学他引用次数255[69][70])。 

    2)实际应用相关工作

    2006年所提出的蜂窝系统导频设计方案被4G核心物理层标准采纳;2013年在文献[37]中提出图样分割多址接入Pattern Division Multiple Access, PDMA技术2018年在文献[1]中提出复杂度受限下容量可达非正交多址接入设计原则Complexity-Constrained Capacity-Achieving Non-Orthogonal Multiple Access Design Principle2021在文献[3]中提出图样分割随机接入(Pattern Division Random Access, PDRA技术

    所提PDMA技术[37]分别IMT-20205G)推进组和ITU纳入5G白皮书[55]未来地面无线通信技术发展趋势技术报告(页码6[54],同时在国际标准化组织3GPP工作组关于5G的标准化会议上,该项技术被华为、中国移动、大唐电信、中兴通讯(ZTE)及展讯通信等多家通信企业的方向性技术文稿多次引用[59]-[64],被列为国家863计划5G移动通信先期研究重大项目重要阶段性和进展标志性成果[65](形成了以PDMA非正交多址接入+多元LDPC编码为代表的5G谱效提升总体技术方案),且ITU3GPP列为5G标准化项主流候选多址接入方案之一PDRA技术于20223月作为单独一章纳入FuTURE论坛6G演进多址接入技术》白皮[57]在检测与估计方面工作:性能无损低复杂度多元LDPC译码器IMT-2030(6G)推进组作为单独一节纳入《先进调制编码技术研究报告》[58],并作为报告的27篇基础参考文献之一被引用。分布式信号处理方面的工作[22][21]被华为2022年技术成果转化二等奖“分布式基带架构的新型信道估计”作为项目指导文献(国内唯一单位[68])。

    在担任IMT-20205G)新型多址接入技术组副组长期间负责牵头IMT-20205G)新型多址接入技术方案征集评估以及白皮书撰写

    3)科研项目

    与国防科工局、军委装备发展部、华为、中国移动、ZTE、中国信科、是德科技(Keysight TechnologiesHP仪器仪表部门)、紫光展锐、OPPO以及小米科技等通信企业就3/4/5/6G移动通信和信号处理关键技术等前沿研究多次开展合作对产业界需求、标准制定、方案设计、产品研发以及项目管理等方面有深入理解,研究团队秉承“创新扎根实践,科研服务社会”的宗旨,在相关领域已经进行了长期积累,研究成果丰硕,热诚欢迎优秀学生及科研人员加入我们

  • 代表性论文

    [1] X. Dai, Z. Zhang, S. Chen, S. Sun, and B. Bai, “Pattern Division Multiple Access (PDMA): A new multiple access technology for 5G,” IEEE Wireless Commun., vol. 25, no. 2, pp. 54-60, Apr. 2018. 

    [2] X. Dai, “Allele gene based adaptive genetic algorithm to the code design,” IEEE Trans. Commun., vol. 59, no. 5, pp. 1253-1259, May 2011.

    [3] X. Dai, T. Yan, Q. Li, H. Li, and X. Wang, “Pattern Division Random Access (PDRA) for M2M communications with massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp.12631-12639, Dec. 2021.

    [4] X. Dai, K. Higuchi, Z. Zhang, K. Long, S. Sun, and Y. Wang, “Enhancing the performance of the quasi-ML receiver (detector plus decoder) for coded MIMO systems via statistical information,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3765-3771, May 2016.

    [5] X. Dai, Z. Zhang, K. Long, S. Sun, and Y. Wang, “Unequal error correcting capability aware iterative receiver for (parallel) turbo coded communications,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3446-3451, Sept. 2014.

    [6] X. Dai, R. Zou, S. Sun, and Y. Wang, “Reducing the complexity of quasi-maximum-likelihood detectors through companding for coded MIMO systems,” IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 1109-1123, Mar. 2012.

    [7] X. Dai, H. Zhang, and Y. Wang, “New sequence design criteria for multipath channels,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4149-4158, Oct. 2009.

    [8] X. Dai, R. Zou, S. Sun, and Y. Wang, “Reducing complexity of quasi-ML detectors through simplified branch metric and accumulated branch metric based detection,” IEEE Commun. Lett., vol. 17, no. 5, pp. 916-919, May 2013.

    [9] X. Dai, “Enhancing the performance of the SIC-MMSE iterative receiver for coded MIMO systems via companding,” IEEE Commun. Lett., vol. 16, no. 6, pp. 921-924, Jun. 2012.

    [10] X. Dai, R. Zou, S. Sun, and Y. Wang, “Transceiver impairments on the performance of the LMMSE-PIC iterative receiver and its mitigation,” IEEE Commun. Lett., vol. 17, no. 8, pp.  1536-1539, Aug. 2013.

    [11] X. Dai, S. Sun, and Y. Wang, “Reduced-complexity performance-lossless (quasi-) maximum-likelihood detectors for S-QAM modulated MIMO Systems,” Electronics Lett., vol. 49, no. 11, pp. 724-725, May 2013.

    [12] X. Dai, T. Yan, Y. Dong, Y. Luo, and H. Li, “Low-complexity joint weighted neumann series and gauss-seidel soft-output detection for massive MIMO systems,” Wireless Pers. Commun., vol. 120, no. 4, pp. 2802-2811, Oct. 2021.

    [13] X. Dai, Z. Zhang, L. Dai, and B. Bai, “A low-complexity hardware-friendly DFT-based channel estimator for the LTE uplink channel,” Wireless Pers. Commun., vol. 97, no. 4, pp. 4813-4825, Aug. 2017.

    [14] X. Dai, S. Sun, and Y. Wang, “Reduced-complexity (quasi-) maximum-likelihood detectors with no performance degradation for S-QAM modulated MIMO systems,” Wireless Pers. Commun., vol. 66, no. 4, pp. 613-6273, Oct. 2012.

    [15] X. Dai, “Successive interference cancellation amenable space-time codes with good multiplexing-diversity tradeoff,” Wireless Pers. Commun., vol. 55, no. 4, pp. 645-654, Oct. 2010.

    [16] H. Li, Y.  Dong, C. Gong, X. Wang and X. Dai*, “Decentralized Groupwise Expectation Propagation Detector for Uplink Massive MU-MIMO Systems,” IEEE Internet of Things J., vol. 10, no. 6, pp. 5393-5405, 15 March15, 2023. (*Corresponding author)

    [17] H. Li, C. Gong, Q. Li, S. Hao, X. Wang and X. Dai*, “OTFS-PDMA Scheme with EPA-Based Receivers for High-Mobility IoT Networks”, IEEE Trans. Wireless Commun., 2023. DOI: 10.1109/TWC.2023.3323559 (*Corresponding author)

    [18] C. Gong, H. Li, S. Hao, K. Long and X. Dai*, “Active RIS Enabled Secure NOMA Communications With Discrete Phase Shifting”, IEEE Trans. Wireless Commun., 2023. DOI: 10.1109/TWC.2023.3309006 (*Corresponding author)

    [19] Z. Zhang, C. Gong, Y. Dong, X. Wang, and X. Dai*, “Expectation propagation aided signal detection for uplink massive generalized spatial modulation MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 2006-2018, Mar. 2022. (*Corresponding author)

    [20] H. Li, Y. Dong, C. Gong, X. Wang and X. Dai*, “Gaussian Message Passing Detection With Constant Front-Haul Signaling for Cell-Free Massive MIMO,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 5395-5400, April 2023. (*Corresponding author)

    [21] Z. Zhang, Y. Dong, K. Long, X. Wang, and X. Dai*, “Decentralized baseband processing with gaussian message passing detection for uplink massive MU-MIMO systems,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2152-2159, Feb. 2022. (*Corresponding author)

    [22] Z. Zhang, H. Li, Y. Dong, X. Wang, and X. Dai*, “Decentralized signal detection via expectation propagation algorithm for uplink massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11233-11240, Oct. 2020. (*Corresponding author)

    [23] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang and X. Dai*, “A Non-gaussianity-aware receiver for impulsive noise mitigation in underwater communications,” IEEE Trans. Veh. Technol, vol. 70, no. 6, pp. 6018-6028, Jun. 2021. (*Corresponding author)

    [24] C. Gong, X. Yue, Z. Zhang, X. Wang, and X. Dai*, “Enhancing physical layer security with artificial noise in large-scale NOMA networks,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2349-2361, Mar. 2021. (*Corresponding author)

    [25] C. Gong, X. Yue, X. Wang, X. Dai*, R. Zou, and M. Essaaidi, “Intelligent reflecting surface aided secure communications for NOMA networks,” IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2761-2773, Mar. 2022. (*Corresponding author)

    [26] Y. Dong, H. Li, C. Gong, X. Wang and X. Dai*An Enhanced Fully Decentralized Detector for the Uplink M-MIMO System,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 13030-13042, Dec. 2022. (*Corresponding author)

    [27] Y. Dong, H. Li, X. Wang, X. Dai* and K. Long, “Robust Expectation Propagation Detector in Impulsive Noise Channel,” IEEE Syst. J., vol. 17, no. 2, pp. 2049-2052, Jun. 2023. (*Corresponding author)

    [28] Z. Zhang, C Gong, H. Li, Y. Dong, X. Wang, and X. Dai*, “Soft-input soft-output detection via expectation propagation for massive spatial modulation MIMO systems,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1173-1177, Apr. 2021. (*Corresponding author)

    [29] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang, and X. Dai*, “Low complexity receiver via expectation propagation for OTFS modulation,” IEEE Commun. Lett., vol. 25, no. 10, pp. 3180-3184, Oct. 2021. (*Corresponding author)

    [30] Y. Dong, H. Li, Z. Zhang, X. Wang, and X. Dai*, “Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems” IEEE Commun. Lett., vol. 24, no. 3, pp. 539-542, Mar. 2020. (*Corresponding author)

    [31] Y. Dong, C. Gong, Z. Zhang, X. Wang, K. Long, and X. Dai*, “Low-complexity EP receiver based on location-aware and reliability-aware strategy,” IEEE Commun. Lett., vol. 25, no. 6, pp. 2034-2038, Jun. 2021. (*Corresponding author)

    [32] H. Zhuang, J. Li, W. Geng, and X. Dai*, “Duplexer design for full-duplex based wireless communications,” China Commun., vol.13, no.11, pp.1-13, Nov. 2016. (*Corresponding author)

    [33] B. Zhong, J. Zhang, Q. Zeng, and X. Dai*, “Coverage probability analysis for Full-Duplex relay aided Device-to-Device communications networks,” China Commun., vol.13, no.11 pp.60-67, Nov. 2016. (*Corresponding author)

    [34] X. Sun, D. Zhang, and X. Dai*, “Performance analysis of Full-Duplex based two-way relaying” China Commun., vol.13, no.11, pp.35-48, Dec. 2016. (*Corresponding author)

    [35] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang, and X. Dai*. “A Low-Complexity Precoding Scheme for Downlink Massive MU-MIMO Systems with Low-Resolution DACs,Wire. Personal Commun., pp. 3627-3640, May. 2022. (*Corresponding author)

    [36] C. Gong, X. Dai*, J. Cui, and K. Long, Performance Analysis of Distributed Reconfigurable Intelligent Surface Aided NOMA Systems,” Wire. Personal Commun., May. 2023. (*Corresponding author)

    [37] X. Dai, S. Chen, S. Sun, et. al “Successive interference cancelation amenable multiple access (SAMA) for future wireless communications,” in Proc. IEEE ICCS, Macau, China, 2014, pp. 222-226.

    [38] X. Dai, Y. Yu, C. Sun, S. Sun and Y. Wang, “Shedding new light on sequence design criteria for multipath channels,” in Proc. IEEE ICC, Dresden, Germany, 2009, pp. 1-6.

    [39] X. Dai, “Low-complexity maximum-likelihood-based QRD-M for MIMO systems with S-QAM or APSK,” in Proc. IEEE ICC, Cape Town, South Africa, 2010, pp. 1-6. 

    [40] X. Dai, S. Sun, and Y. Wang, “Two high-rate space-time codes for three and four transmit antennas with good diversity-multiplexing tradeoffs,” in Proc. the 5th International ICST Conference on Communications and Networking in China, Beijing, 2010, pp. 1-5.

    [41] X. Dai, S. Sun, and Y. Wang, “Successive interference cancellation amiable space-time codes with good multiplexing-diversity tradeoff,” in Proc. the 15th Asia-Pacific Conference on Communications, 2009, pp. 237-240.

    [42] X. Dai, Yong, B, and L. Chen, “Shedding new light on merit factor,” VTC Spring 2008 - IEEE Vehicular Technology Conference, 2008, pp. 1776-1780.

    [43] X. Gao, L. Dai, Y. Zhang, T. Xie, X. Dai, and Z. Wang, “Fast channel tracking for Terahertz beamspace massive MIMO systems” IEEE Trans. Vehi. Tech., vol. 66, no. 7, pp.5689-5696, Jul. 2017.

    [44] L. MaS. TongH. Zheng, B. Bai, and X. Dai, “Edgewise Serial Message Passing Detection of Uplink SCMA Systems for Better User Fairness and Faster Convergence Rate,IEEE Commun. Lett., vol. 8, no. 4, pp. 1285-1288, Aug. 2019.

    [45] T. Xie, L. Dai, X. Gao, X. Dai, Y. Zhao, “Low-Complexity SSOR-Based precoding for massive MIMO systems,” IEEE Commun. Lett., vol. 20, no. 4, pp. 744-747, Apr. 2016.

    [46] Z. Zhang, J. Wu, X. Ma, Y. Dong, Y. Wang, S. Chen, and X. Dai*, “Reviews of recent progress on low-complexity linear detection via iterative algorithms for massive MIMO systemsIEEE /CIC ICCC Workshops, 2016, pp. 1-6. (*Corresponding author)

    [47] 戴晓明,庞立卓,常争,张馨月,邢怡然,王曦元. 面向 mMIMO 系统的模式分割随机接入方案[J].电信科学,2022,38(10):57-66.

    [48] 李华,郝诗雅,巩彩红,李倩倩,戴晓明*.面向 6G 的新型多址与波形技术[J].电信科 学,2022,38(10):36-45. (*Corresponding author)

    [49] 董园园, 张钰婕, 李华, 王春雷, 刘晓菲, 戴晓明*. 面向5G的非正交多址接入技术[J].  电信科学, 2019, 35 (07): 27-36. (*Corresponding author)

    [50] 董园园, 巩彩红, 李华, 戴晓明*. 面向6G的非正交多址接入关键技术[J]. 移动通信, 2020, 44 (6): 57-62. (*Corresponding author)

    [51] 李华, 董园园, 巩彩红, 戴晓明*. 面向车联网的非正交多址接入关键技术研究[J]. 移动通信, 2020, 44 (11): 02-07. (*Corresponding author)

    [52] 张振宇, 邹润民, 惠峥, 闫甜甜, 张雨轩, 戴晓明*. 面向6G超大规模MIMO系统分布式基带处理信号检测算法[J]. 移动通信, 2021, 45 (4): 16-20. (*Corresponding author)

    [53] 大唐电信集团, “一种新型非正交多址接入方案”, IMT-2020(5G)推进组, IMT-2020_ TECH_1308, Apr. 2013.

    [54] https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2320-2014-PDF-E.pdf.

    [55] https://www.ambchina.com/data/upload/image/20211124/5G%E6%A6%82%E5%BF%B5%E7%99%BD%E7%9A%AE%E4%B9%A6.pdf. 

    [56] https://eecs.pku.edu.cn/info/1026/5496.htm.

    [57] 未来移动通信论坛|FuTURE论坛5G/6G SIG工作组2022年第一次工作组会议在北京召开 (future-forum.org) http://www.future-forum.org/cn/onews.asp?id=2006.

    [58] https://www.imt2030.org.cn/html/default/zhongwen/chengguofabu/yanjiubaogao/index.html?index=2

    [59] 3GPP, R1-162226, Discussion on multiple access for new radio interface, ZTE, https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/R1-162226.zip.

    [60] 3GPP, R1-167002, Performance analysis on the effect of spreading signature matrix in 5G NR multiple access schemes, Spreadtrum Communications,  https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86/Docs/R1-167002.zip.

    [61] 3GPP, R1-1608755, LLS results of PDMA with realistic channel estimation, CATT,

    http://www.3gpp.Org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1608755.zip.

    [62] 3GPP, R1-1608756, SLS results of PDMA, CATT, https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_86b/Docs/R1-1608756.zip.

    [63] 3GPP, R1-164889, Analytical Evaluation of Multiple Access and Preliminary LLS Results, CMCC, http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/R1-164889.zip.

    [64] 3GPP, R1-164247, Performance of LLS of PDMA, CATT, https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/R1-164247.zip.

    [65] http://www.gov.cn/xinwen/2016-09/26/content_5112102.htm

    [66] 戴晓明, 大规模多入出系统非中心化信号检测算法. IMT2030 6G推进组. 6G无线技术组第四次会议. IMT-2030_WG_MIMO_202101006.

    [67] https://massivemimo.eu/research-library/.

    [68] https://sse.cuhk.edu.cn/faculty/tsunghuichang

    [69] https://www.keguanjp.com/kgjp_jingji/kgjp_jj_diaocha/pt20170724094858.html

    【70】https://www.keguanjp.com/kgjp_keji/kgjp_kj_etc/pt20170420111638.html

  • 科研业绩

    【科研项目】

    华为技术有限公司大规模天线与新型多址接入关键技术研究2018,主持。

    中兴通讯股份有限公司面向5G的基于稀疏编码矩阵的非正交多址研究2018,主持。

    电信科学技术研究院新型多址接入关键技术研究2017,主持。

    北京小米移动软件有限公司面向5G的关键技术研究2017,主持。

    国家自然科学基金重点项目时空一致性的无线接入架构与关键技术研究2016,参与。

    国家自然科学面上项目基于稀疏编码基础理论及关键技术研究 618710292019,主持。

    OPPO广东移动通信有限公司 多麦克风语音增强和分离算法研究2020,主持。

    国家863计划重点项目“5G新型调制编码技术研究开发 SS2015AA0113032014,参与(排名第二)。

    北京科委 面向连续广域覆盖场景的5G新型多址接入关键技术研究2017,主持。

    大唐移动第五代通信中新型多址方案技术2016,主持。

    中国移动研究院项目关于5G总体设计、关键技术研究及标准化-新型多址技术评估与方案设计2015,主持。

    中国移动研究院项目“5G多址接入关键技术研究2016,主持。

    展讯通信项目第五代通信中新型多址方案设计2017,主持。

    展讯通信项目第六代通信物理层关键技术研究2021,主持。

    是德科技(Keysight,原安捷伦仪器)全球大学研究项目第五代非正交多址接入方案研究2016,主持。

    中央高校基本科研业务项目下一代移动通信系统(5G)超密集组网关键技术研究2016,主持。

    【突出成果】

    1PDMAITU发表的“未来地面无线通信技术发展趋势引用,并被ITU3GPP列为5G标准化三项主流候选多址接入方案之一[4]-[6]

    http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2320-2014-MSW-E.docx.

    22013年华为创新研究计划项目需求说明书”中基于准正交空时码和OSIC接收机的MU-MIMO配对研究”项目唯一的参考文献是基于戴晓明教授发表的论文(PDMA技术的基础)。